
Tidal tutorial

Welcome to the Tidal tutorial. Tidal is a mini-language for exploring paern, designed for use in live coding
performance. In this tutorial we’ll step through different levels of abstraction, starting with sounds and filters,
then sequences of sounds and filters, and moving up to functions for manipulating those sequences, and ending
up looking at functions which manipulate other functions. Fun stuff!

1 Sounds and effects
With a bit of fiddling, Tidal can be used to paern the input to any device which takes MIDI or Open Sound
Control input, but the default is the Dirt soware sampler. If you followed the install process, you should have
Dirt installed and it should be running.

To test it, run the following by typing it into your text editor, holding down ctrl and pressing enter:

d1 $ sound "can"

You should be able to hear a repeating sample of someone hiing a can. Tidal is designed with repetitive dance
music in mind, and will repeat the paern forever, although you can build a great deal of variety in a single
paern, and also change it while it is running (i.e. live code).

e can in the above is the name of the sample you are playing. Well actually it is the name of a folder full of
samples. You can find them in the samples subfolder of your dirt folder. You can specify a different sample by
number, using the colon:

d1 $ sound "can:1"

Try some different numbers to hear all the different can samples that come with dirt.

Dirt comes with a wide range of samples to work with, here’s some of them:

flick sid can metal future gabba sn mouth co gretsch mt arp h cp

cr newnotes bass crow hc tabla bass0 hh bass1 bass2 oc bass3 ho

odx diphone2 house off ht tink perc bd industrial pluck trump

printshort jazz voodoo birds3 procshort blip drum jvbass psr

wobble drumtraks koy rave bottle kurt latibro rm sax lighter lt

arpy feel less stab ul

Replace can with one of these to explore.

1

1.1 Silence

At this point you are probably reaching for a way to make a paern stop. You can do this by seing the paern
to be silent like this:

d1 $ silence

icker still, you can just make everything silent by evaluating (again, with ctrl-enter) the word hush:

hush

is will become more useful later when we learn how to play more than one sound at once - hush will silence
them all.

1.2 Effects

You can also apply a range of effects to change what your sound, er, sounds like. For example a vowel-like
‘formant filter’:

d1 $ sound "can:1" |+| vowel "a"

e |+| operator in the above is what binds the sound with the vowel parameter.

Try changing the “a” for other vowels. You can also play the sample faster, which makes it higher in pitch:

d1 $ sound "can:1" |+| speed "2"

Or slower:

d1 $ sound "can:1" |+| speed "0.5"

Or even backwards:

d1 $ sound "can:1" |+| speed "-1"

You can also apply several effects at the same time:

d1 $ sound "can:1" |+| vowel "a" |+| speed "-1"

Here is the full list of effects you can play with.

Name Description
accelerate a paern of numbers that speed up (or slow down) samples while they play.
bandf a paern of numbers from 0 to 1. Sets the center frequency of the band-pass filter.
bandq a paern of numbers from 0 to 1. Sets the q-factor of the band-pass filter.
begin a paern of numbers from 0 to 1. Skips the beginning of each sample, e.g. 0.25 to cut

off the first quarter from each sample.

2

Name Description
coarse fake-resampling, a paern of numbers for lowering the sample rate, i.e. 1 for original

2 for half, 3 for a third and so on.
crush bit crushing, a paern of numbers from 1 for drastic reduction in bit-depth to 16 for

barely no reduction.
cutoff a paern of numbers from 0 to 1. Applies the cutoff frequency of the low-pass filter.
delay a paern of numbers from 0 to 1. Sets the level of the delay signal.
delayfeedback a paern of numbers from 0 to 1. Sets the amount of delay feedback.
delaytime a paern of numbers from 0 to 1. Sets the length of the delay.
end the same as begin, but cuts the end off samples, shortening them; e.g. 0.75 to cut off

the last quarter of each sample.
gain a paern of numbers that specify volume. Values less than 1 make the sound quieter.

Values greater than 1 make the sound louder.
hcutoff a paern of numbers from 0 to 1. Applies the cutoff frequency of the high-pass filter.
hresonance a paern of numbers from 0 to 1. Applies the resonance of the high-pass filter.
pan a paern of numbers between 0 and 1, from le to right (assuming stereo)
resonance a paern of numbers from 0 to 1. Applies the resonance of the low-pass filter.
shape wave shaping distortion, a paern of numbers from 0 for no distortion up to 1 for

loads of distortion (watch your speakers!)
sound a paern of strings representing sound sample names (required)
speed a paern of numbers from 0 to 1, which changes the speed of sample playback, i.e. a

cheap way of changing pitch
unit a paern of words specifying the unit that the speed parameter is expressed in. Can

either be ‘rate’ (the default, percentage playback rate), ‘cycle’ (cycle/n), or ‘secs’ (n
seconds)

vowel formant filter to make things sound like vowels, a paern of either a, e, i, o or u. Use
a rest (~) for no effect.

2 Continuous patterns
ere are some ‘continuous’ paerns built in, which allow you to apply things like sinewaves to parameters
which take paerns of numbers.

For example, to apply a sinewave to the pan parameter:

d1 $ sound "bd*16" |+| pan sine1

sine1 is a sinewave paern which travels from 0 to 1 and back again over a cycle. ere is also tri1, saw1 and
square1 for triangular, sawtooth and square waves respectively. If you miss off the ‘1’ from the end of these you
get a paern from -1 to 1 instead, which can sometimes be useful. We’ll see how to manipulate these paerns to
go to any range later on.

3 Sequences
You’re probably bored of hearing the same sample over and over by now, let’s quickly move on to sequences.
Tidal sequences allow you to string samples together, stretch the sequences out and stack them up in a variety
of interesting ways, as well as start mixing in randomisation.

You can make a tidal cycle with more than one sample just like this:

d1 $ sound "drum drum:1"

3

Kick and snare forever!
You’ll notice that however many things you put into a Tidal paern, it still takes up the same amount of time.
For example the following fits three sounds into the same cycle duration:

d1 $ sound "drum drum:1 can"

By the way, from time to time I will illustrate concepts with paerns of colour, for example:

"blue orange green"

You can understand the above in terms of a sound paern that reads from le to right, i.e. the horizontal axis is
time.
e ~ symbol represents a rest, or pause, e.g.:

d1 $ sound "drum drum:1 ~"

You can play around with some more off-kilter paerns, for example this one which has seven steps in it:

d1 $ sound "drum ~ can ~ ~ drum:1 ~"

3.1 Subdividing sequences

You can take one step in a paern and subdivide it into substeps, for example in the following the three can

samples are played inside the same amount of time that each drum sample does:

d1 $ sound "drum drum [can can:4 can:5] drum"

Again, here’s the visual equivalent, which makes clear that an event is broken down into three ‘subevents’:

"blue green [purple grey black] orange"

As you can see the square brackets give the start and end of a subdivision. Here’s another example, which has
two events, which are broken down into different numbers of sub events:

"[blue green] [purple grey black]"

Actually you can keep going, and subdivide a step within a subdivision:

d1 $ sound "drum drum [can [can:4 can:6 can:3] can:5] drum"

Again, the visual equivalent:

"orange purple [red [green grey brown] yellow] pink"

4

3.2 Layering up patterns

Square brackets also allow you to specify more than one subpaern, by separating them with a comma:

d1 $ sound "drum [can cp, can bd can:5]"

As you can hear, the two paerns are layered up. Because they are different lengths (one with two sounds, the
other with three), you can get an interesting polyrhythmic effect. You can hear this beer if you just have a
single subdivision like this:

d1 $ sound "[can cp, can bd can:5]"

We can visualise this by stacking up the different part of the paerns, which makes clear how they co-occur:

"[orange purple, red green pink]"

If you use curly brackets rather than square brackets the subpaerns are layered up in a different way, so that
the sounds inside align, and the different lengths of paerns seem to roll over one another:

d1 $ sound "{can can:2, can bd can:5}"

Here’s what that looks like:

"{orange purple, red green pink}"

e problem with the above is that the paern is structured over several ‘cycles’ (in this case, three), and we can
only see the first cycle. Lets jump a bit ahead and use the density function to pack more cycles in:

density 3 "{orange purple, red green pink}"

Again, you can layer up more than one of these subpaerns:

d1 $ sound "[can cp, can bd can:5, arpy arpy:2 ~ arpy:4 arpy:5]"

And subdivide further:

d1 $ sound "{[can can] cp, can bd can:5, arpy arpy:2 ~ [arpy:4 arpy:5] arpy:5}"

is can already start geing very complex, and we haven’t even got on to functions yet!

5

3.3 Sequencing niceties and tris

Staying with sequences for a bit longer, there are a couple of other things you can do.

3.3.1 Repetition and division

If you want to repeat the same sample several times, you can use * to specify how many times. For example this:

d1 $ sound "bd [can can can]"

Can be wrien like this:

d1 $ sound "bd can*3"

When live coding saving a lile bit of typing helps a lot. You can experiment with high numbers to make some
strange sounds:

d1 $ sound "bd can*32 bd can*16"

e above paern plays the samples so quickly that your ears can’t hear the individual sounds any more, and
instead you hear it as an audio frequency, i.e. a musical note.

If you have a paern that has a repeat that isn’t a subpaern, like this:

d1 $ sound "bd can can can"

You can repeat successive events with !:

d1 $ sound "bd can ! !"

You can also ‘slow down’ a subpaern, for example this plays the [bd arpy sn:2 arpy:2] at half the speed:

d1 $ sound "bd [bd arpy sn:2 arpy:2]/2"

at is, the first cycle you get bd [bd arpy] and the second time around you get bd [sn:2 arpy:2]. is is a
lile bit difficult to understand, but basically if you don’t get through a whole subpaern during one cycle, it
carries on where it le off the next one. is is worth looking at a colour paern:

density 4 "red [blue orange purple green]/2"

Again we have used density to pack in more cycles (in this case 4) so you can see the changes from one cycle to
the next.

You can get some strange things going on by for example repeating four thirds of a subpaern per cycle:

d1 $ sound "bd [bd arpy sn:2 arpy:2]*4/3"

If you like strange time signatures, hopefully you will be having fun with this already.

6

3.3.2 Random drops

If you only want something to happen sometimes, you can put a question mark aer it:

d1 $ sound "bd can? bd sn"

In the above, the can sample will only play on average 50% of the time. If you add a question mark to a subpaern,
it applies separately to each element of the subpaern. For example in the following sometimes you get no can
sounds, sometimes just the first or second, and sometimes both:

d1 $ sound "bd [can can:4]? bd sn"

3.3.3 Enter Bjorklund (and Euclid)

If you give two numbers in parenthesis aer an element in a paern, then Tidal will distribute the first number
of sounds equally across the second number of steps:

d1 $ sound "can(5,8)"

But then, it isn’t possible to distrute three elements equally across eight discrete steps, but the algorithm does
the best it can. e result is a slightly funky bell paern. Try this one:

d1 $ sound "can(5,8)"

is uses “Bjorklund’s algorithm”, whichwasn’tmade formusic but for an application in nuclear physics, which is
exciting. More exciting still is that it is very similar in structure to the one of the first known algorithms wrien
in Euclid’s book of elements in 300 BC. You can read more about this in the paper e Euclidean Algorithm
Generates Traditional Musical Rhythms by Toussaint. Examples from this paper are included below, although
some require rotation to start on a particular beat - see the paper for full details and references.

Paern Description
(2,5) A thirteenth century Persian rhythm called Khafif-e-ramal.
(3,4) e archetypal paern of the Cumbia from Colombia, as well as a Calypso rhythm from

Trinidad.
(3,5) When started on the second onset, is another thirteenth century Persian rhythm by the name

of Khafif-e-ramal, as well as a Rumanian folk-dance rhythm.
(3,7) A Ruchenitza rhythm used in a Bulgarian folk-dance.
(3,8) e Cuban tresillo paern.
(4,7) Another Ruchenitza Bulgarian folk-dance rhythm.
(4,9) e Aksak rhythm of Turkey.
(4,11) e metric paern used by Frank Zappa in his piece titled Outside Now.
(5,6) Yields the York-Samai paern, a popular Arab rhythm, when started on the second onset.
(5,7) e Nawakhat paern, another popular Arab rhythm.
(5,8) e Cuban cinquillo paern.
(5,9) A popular Arab rhythm called Agsag-Samai.
(5,11) e metric paern used by Moussorgsky in Pictures at an Exhibition.
(5,12) e Venda clapping paern of a South African children’s song.
(5,16) e Bossa-Nova rhythm necklace of Brazil.
(7,8) A typical rhythm played on the Bendir (frame drum).

7

http://cgm.cs.mcgill.ca/~godfried/publications/banff.pdf
http://cgm.cs.mcgill.ca/~godfried/publications/banff.pdf

Paern Description
(7,12) A common West African bell paern.
(7,16) A Samba rhythm necklace from Brazil.
(9,16) A rhythm necklace used in the Central African Republic.
(11,24) A rhythm necklace of the Aka Pygmies of Central Africa.
(13,24) Another rhythm necklace of the Aka Pygmies of the upper Sangha.

4 Functions
Up until nowwe havemostly only beenworkingwith building sequences, although this has included polyrhythm,
and some simple algorithmic manipulation that is built into Tidal’s paern syntax. Now though it is time to start
climbing up the layers of abstraction to see what we can find on the way.

First, lets have a closer look at the functions we have been using so far.

4.1 Sending patterns to Dirt

d1 is a function that takes a paern as input, and sends it to dirt. By default there are ten of them defined, from
d1 to d10, which allows you to start and stop multiple paerns at once.

For example, try running each of the following four lines in turn:

d1 $ sound "bd sn"

d2 $ sound "arpy arpy:2 arpy"

d1 $ silence

d2 $ silence

efirst line will start a bass drum - snare paern, the second start a slightly tuneful paern, then the third swaps
the first paern with silence (so it stops), and the four swaps the second with silence (so everything is silent).

It’s important to notice here that the Tidal code you type in and run with ctrl-enter is changing paerns which
are running in the background. e running paerns don’t change while you are editing the code, until you hit
ctrl-enter again. ere is a disconnect between code and process that might take a lile geing used to.

4.2 e dollar $

You might wonder what that dollar symbol $ is doing. If you are not wondering this, you are safe to skip this
explanation.

e dollar actually does almost nothing; it simply takes everything on its right hand side, and gives it to the
function on the le. If we take it away in the following example, we get an error:

d1 sound "bd sn"

at’s because Tidal¹ reads from le to right, and so gives the sound to d1, before sound has taken "bd sn" as
input, which results in confusion. We could get the right behaviour a different way, using parenthesis:

d1 (sound "bd sn")

¹well, Tidal’s underlying language, Haskell

8

is makes sure sound gets its paern before it is passed on to d1. e dollar is convenient though because you
don’t have to match the closing bracket, which can get fiddly when you have lots of paerns embedded in each
other.

d1 $ sound "bd sn"

Anyway, lets escape this syntactical diversion.

4.3 Layering up patterns with stack

You can play several paerns at once with the stack function, giving a list of paerns by wrapping them in
square brackets and separating with commas. is is rather similar to the sequencing syntax we saw earlier, but
takes place in the outside world of functions.

d1 $ stack [sound "bd sn:2" |+| vowel "[a e o]/2",

sound "casio casio:1 casio:2*2"

]

4.4 Stiing patterns end-to-end with cat and slowcat

If you replace stack with cat, the paerns will be stuck one aer another instead of on top of one another:

d1 $ cat [sound "bd sn:2" |+| vowel "[a o]/2",

sound "casio casio:1 casio:2*2"

]

e cat function squeezes all the paerns into the space of one, but slowcatwill maintain the speed of playback:

d1 $ slowcat [sound "bd sn:2" |+| vowel "[a o]/2",

sound "casio casio:1 casio:2*2"

]

4.5 Slowing down and speeding up patterns with slow and density

Simply slowing paerns down substantially changes their character, sometimes in quite suprising ways. Use
slow to slow down a paern:

d1 $ slow 2 $ sound "bd ~ sn bd ~ [~ bd]/2 [sn [~ bd]/2] ~"

And our friend density to speed it up again.

d1 $ density 2 $ sound "bd ~ sn bd ~ [~ bd]/2 [sn [~ bd]/2] ~"

Play around with the numbers, and note that density 0.5 is actually the same as slow 2.

4.6 Reversal with rev

e rev function reverses every cycle in a paern:

d1 $ rev $ sound "bd ~ sn bd ~ [~ bd]/2 [sn [~ bd]/2] ~"

9

4.7 chop

e chop function chops each sample into the given number of bits:

d1 $ chop 16 $ sound "bd ~ sn bd ~ [~ bd]/2 [sn [~ bd]/2] ~"

is makes it sounds really granulated. It sounds stranger if you reverse it aer the chop:

d1 $ rev $ chop 16 $ sound "bd ~ sn bd ~ [~ bd]/2 [sn [~ bd]/2] ~"

Due to the use of $, this is working from right to le; first it makes the sequence, then it passes the sequence to
chop 16, then passes that to rev, and finally out to the Dirt synth using d1. If we swap the order of the chop and
the rev, it sounds different:

d1 $ chop 16 $ rev $ sound "bd ~ sn bd ~ [~ bd]/2 [sn [~ bd]/2] ~"

at’s because it’s doing the reverse first, then chopping the samples up aer, so the bits don’t end up reversed.
(I hope that makes sense).

Chop works particularly well for longer samples:

d1 $ rev $ slow 4 $ chop 16 $ sound "breaks125"

is gets a lot more fun with meta functions.

5 Meta-functions
ere are a lot more functions than the above, but before looking at some more of them lets jump up a level to
look at some meta-functions.

5.1 every

By meta-functions I mean functions which take other functions as input. For example, what if we didn’t want to
reverse a paern every time, but only every other time?

d1 $ every 2 rev $ sound "bd can sn can:4"

Instead of applying rev directly to sound "bd can sn can:4", the above passes rev to every, telling it to apply
it every 2 repetitions. Try changing 2 to 4 for a very different feel.

Lets have a look at a visual example:

density 8 $ every 4 rev "black darkblue blue lightblue white"

is works with other functions that work on paerns. Here’s how you make a paern twice as dense every four
repetitions:

d1 $ every 4 (density 2) $ sound "bd can sn can:4"

10

… and visually:

density 8 $ every 4 (density 3) "orange red pink purple"

Note that we have to wrap density 2 in parenthesis, to package it up to pass to every as a function that can be
selectively applied to "bd can sn can:4". If this doesn’t make sense, get a feel for it by playing around with it,
and content yourself with the fact that this technique involves something called currying, so cna’t be all bad.

Lets try this with some longer samples:

d1 $ every 2 (density 1.5) $ every 3 (rev) $ slow 4 $ chop 16 $ sound "breaks125"

5.2 sometimes

e sometimes function works a bit like every, except it sometimes applies the given function, and sometimes
doesn’t, in an unpredictable manner.

d1 $ sometimes (density 2) $ sound "bd can*2 sn can:4"

ere are similar functions often and almostAlways which apply the function more oen than not, and rarely

and almostNever, which apply the function less oen.

You can always stack functions up, for example this works:

d1 $ sometimes (density 2) $ every 4 (rev) $ sound "bd can sn can:4"

In general, Tidal gets most interesting when you take simple parts and combine them in this way.

5.3 jux

e juxmetafunction applies the given function in just the one channel or speaker. For example, in the following
the given paern is reversed in one of the speakers, and played normally in the other:

d1 $ jux rev $ sound "bd sn*2 can [~ arpy]"

In this one the paern is played 25% faster in one speaker than the other:

d1 $ jux (density 1.25) $ sound "arpy:2 arpy:4 arpy:1 [~ arpy]"

5.4 weave

Weave is a strange one, which takes different synth parameters and overlays them, offset against each other, on
top of a base paern. Ok, this needs an example:

d1 $ weave 16 (pan sine1)

[sound "bd sn", sound "arpy ~ arpy:3", sound "can ~ ~ can:4"]

11

In the above all three paerns have the pan sine1 parameter applied, but are spaced out around the cycle of the
pan, which is also stretched out over 16 cycles. As a result, the three paerns move around each other, following
each other around the speakers. is is especially nice if you’re running Dirt in multichannel mode, i.e. with
more than two speakers.

You can flip things round so that the base is the sound paern, and the paerns you’re applying to different
moving parts of it are effects:

d1 $ weave 16 (sound "arpy arpy:7 arpy:3")

[vowel "a e i", vowel "o i", vowel "a i e o", speed "2 4 ~ 2 1"]

6 Functions part 2
Now we’ve seen how meta-functions can make use of functions, lets have a look at more of the laer.

6.1 Rotation with ~> and <~

e ~> operator ‘rotates’ a paern by the given amount in cycles, for example this shis the paern forward in
time by a quarter of a cycle:

d1 $ 0.25 ~> sound "arpy arpy:1 arpy:2 arpy:3"

Predictably the <~ operator does the same, but in the other direction:

d1 $ 0.25 <~ sound "arpy arpy:1 arpy:2 arpy:3"

Unless another paern is playing at the same time, you can only hear the difference when you change the number,
which you perceive as a skipping back and forth. is is again where those metafunctions come in:

d1 $ every 4 (0.25 <~) $ sound "arpy arpy:1 arpy:2 arpy:3"

In the above, the paern skips every 4th cycle. Again, because the output of all these functions is a paern, they
can be used as input to another function:

d1 $ jux ((1/8) ~>) $ every 4 (0.25 <~) $ sound "arpy*3 arpy:1*2 arpy:4 [~ arpy:3]"

6.2 Compound rotation with iter

For a given n, the iter function shis a paern to the le by 1/n steps every cycle. An example speaks wonders:

d1 $ iter 4 $ sound "arpy:1 arpy:2 arpy:3 arpy:4"

Here’s the visual equivalent:

density 4 $ iter 4 $ "blue green purple orange"

is works well with jux:

d1 $ jux (iter 8) $ sound "arpy:1 arpy:2 arpy:3 arpy:4"

12

6.3 Scaling number patterns

e scale function is handy for taking a paern like sine1which goes from 0 to 1, and making it go to a different
range, in the below example from 1 to 1.5.

d1 $ jux (iter 4) $ sound "arpy arpy:2*2"

|+| speed (slow 4 $ scale 1 1.5 sine1)

Using scale is particularly important for the shape parameter, because if you give that numbers which are too
high (i.e. close to 1) it gets very loud. In the below we cap it at 0.8.

d1 $ jux (iter 4) $ sound "drum drum:1*2"

|+| shape (slow 4 $ scale 0 0.8 sine1)

6.4 Piing samples

You can have one paern for sample names, and another of sample numbers, and combine them to pick which
sample you want.

d1 $ sound (samples "drum arpy newnotes" "0 1 2")

is isn’t very exciting until you start manipulating the paerns before combining them, and as in the below
adding a bit more paern manipulation on top:

d1 $ jux (density 2) $ sound (samples "drum can can" (slow 2.5 "0 1 2 4 5 6"))

7 at’s it for now
ere is more, which you can dig out by exploring the Tidal website, Tidal screencasts (e.g. on youtube and
vimeo) and the Tidal paerns that people have shared. You can also sign up to the Tidal forum at http://lurk.org/
groups/tidal and join the community discussion there. Have fun!

13

http://tidal.lurk.org/
http://lurk.org/groups/tidal
http://lurk.org/groups/tidal

	Sounds and effects
	Silence
	Effects

	Continuous patterns
	Sequences
	Subdividing sequences
	Layering up patterns
	Sequencing niceties and tricks
	Repetition and division
	Random drops
	Enter Bjorklund (and Euclid)

	Functions
	Sending patterns to Dirt
	The dollar $
	Layering up patterns with stack
	Sticking patterns end-to-end with cat and slowcat
	Slowing down and speeding up patterns with slow and density
	Reversal with rev
	chop

	Meta-functions
	every
	sometimes
	jux
	weave

	Functions part 2
	Rotation with ~> and <~
	Compound rotation with iter
	Scaling number patterns
	Picking samples

	That's it for now

